

Realization of Seamless Knowledge

Connecting distributed RDF and Topic Maps

Who is talking?

Lars Marius Garshol

- Development manager at and co-founder of Ontopia
- Co-author of the new ISO 13250 Topic Maps, parts 2 and 3
- Co-editor of ISO 18048 Topic Map Query Language (TMQL)
- Responsible for the Unicode support in the Opera web browser
- Active open source developer in the XML community
- Wrote "Definitive XML Application Development", published by Prentice-Hall in 2002

Ontopia

- the leading topic map software vendor
- Norwegian company headquartered in Oslo
- Main product: Ontopia Knowledge Suite (OKS)

Overview

- Introduction
- A comparison of the models
- RDF/TM interoperability

Introduction

The big picture
Goals and applications

The big picture

http://www.ontopia.net 5

Comparison of goals and use

Topic Maps goals

- make information findable
- make indexes mergeable
- enable collocation of information
- support "seamless knowledge"

Topic Maps uses

- portal infrastructure
- classification/indexing
- application integration
- business process modelling
- product data management
- e-learning
- asset management
- content management

RDF goals

- represent metadata on the web (RDF MS, Lassila & Swick)
- unify metadata and data (MCF, Guha)
- support data integration (Miller)
- enable the Semantic Web
 (Berners-Lee, Miller, ...)

RDF uses

- portal infrastructure
- application integration
- document metadata
- web agent applications
- **???**

7

Comparing the models

Things and symbols
Assertions
Topic maps – overview
Other features

Things

- The heart of RDF and topic maps is the same:
 - symbols representing real-world things
- Both RDF and topic maps consist of assertions about these things

Reference	Topic maps	RDF
Symbol	Topic	Node
Thing	Subject	Resource

Assertions

- RDF has one kind of assertion: the statement
 - subject, predicate, object
- Topic maps have three kinds
 - (1) Names

Names of topics

(2) Occurrences

Concept-resource

(3) Associations

Concept-concept

http://www.ontopia.net

Overview of topic maps

A two-layer model

knowledge layer: topics & associations

information layer: resources

The two layers are linked by occurrences

http://www.ontopia.net

More features of topic maps

Assertions about assertions

- names, occurrences, and associations can be reified
- this enables us to make assertions about other assertions

Representation of context

- assertions in topic maps have scope
- scope enables us to represent the context of an assertion
- uses: provenance, qualification of statements, authority, ...

Identity mechanisms

- the identity of subjects can be captured using URIs in topic maps
- however, topic maps distinguish between information resources and other subjects
- for more information, see Curing the Web's Identity Crisis: Subject Indicators for RDF by Steve Pepper and Sylvia Schwab

Topic map-RDF interoperability

RDF to topic maps
Topic maps to RDF
Future work

http://www.ontopia.net

The RTM vocabulary

- The RTM vocabulary is an RDF vocabulary for expressing RDF-totopic map mappings
 - http://psi.ontopia.net/rdf2tm/
- It operates on the level of RDF vocabularies
 - for each property, state whether it should map to a name, occurrence, or association
 - if it maps to an association, provide the association roles
- RTM is implemented in the OKS, and in the Omnigator
 - an open source implementation is underway in tmapi-utils

Demo of RTM using OmnigatorDeveloped in collaboration with mr. Motomu Naito

The TMR vocabulary

- The TMR vocabulary is a topic map vocabulary for expressing topic maps-to-RDF mappings
- Most topic map constructs can be mapped easily
 - TMR provides the RDF properties to represent names
 - TMR also defines which association role should be the subject, and which the object, in RDF statements
 - Scope is expressed using RDF reification :-(
- TMR is implemented in the OKS and in the Omnigator

Future work

- Within the Semantic Web Best Practices [...] Working Group a Task Force is being set up to work on TM/RDF interoperability
 - most likely it will build on the RTM/TMR approach
 - not clear yet exactly what the scope of the work will be
 - there may be 2-3 TFs, we don't know yet
- The task force is currently looking for participants
 - http://www.w3.org/2001/sw/BestPractices/RDFTM/
 - to join, you must be a member of W3C and SWBPD WG

Thank you!

- The slides from this talk
 - http://www.knowledge-synergy.com/topicmaps/sig-swo.pdf
- About topic maps
 - http://www.topicmap.com (English)
 - http://www.knowledge-synergy.com (Japanese)
- Topic maps standardization
 - http://www.isotopicmaps.org
- About RDF and topic maps (RTM, TMR, +++)
 - http://www.ontopia.net/topicmaps/materials/tmrdf.html
- The Omnigator
 - http://www.ontopia.net/omnigator/
- Questions
 - <larsga@ontopia.net> (English)
 - <motom@green.ocn.ne.jp> (Japanese)